Universal algorithms for learning theory Part II : piecewise polynomial functions
نویسندگان
چکیده
This paper is concerned with estimating the regression function fρ in supervised learning by utilizing piecewise polynomial approximations on adaptively generated partitions. The main point of interest is algorithms that with high probability are optimal in terms of the least square error achieved for a given number m of observed data. In a previous paper [1], we have developed for each β > 0 an algorithm for piecewise constant approximation which is proven to provide such optimal order estimates with probability larger than 1 − m−β. In this paper, we consider the case of higher degree polynomials. We show that for general probability measures ρ empirical least squares minimization will not provide optimal error estimates with high probability. We go further in identifying certain conditions on the probability measure ρ which will allow optimal estimates with high probability.
منابع مشابه
Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions
This paper is concerned with the construction and analysis of a universal estimator for the regression problem in supervised learning. Universal means that the estimator does not depend on any a priori assumptions about the regression function to be estimated. The universal estimator studied in this paper consists of a least-square fitting procedure using piecewise constant functions on a parti...
متن کاملA Convex Parametrization of a New Class of Universal Kernel Functions for use in Kernel Learning
We propose a new class of universal kernel functions which admit a linear parametrization using positive semidefinite matrices. These kernels are generalizations of the Sobolev kernel and are defined by piecewise-polynomial functions. The class of kernels is termed “tessellated” as the resulting discriminant is defined piecewise with hyper-rectangular domains whose corners are determined by the...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملOn Channel Equalization Using Piecewise Polynomial Kernels
A recent approach to understanding the channel equalization problem is based on function approximation theory. From this approach, it is known that the optimal equalizer is nonlinear even for linear channels. Moreover, Volter-ra-based equalizers and decision feedback equalizers (DFE) ooer restricted exibility for representing the nonlinear dis-criminant required in many cases. This fact has mot...
متن کاملWavelet footprints: theory, algorithms, and applications
In recent years, wavelet-based algorithms have been successful in different signal processing tasks. The wavelet transform is a powerful tool because it manages to represent both transient and stationary behaviors of a signal with few transform coefficients. Discontinuities often carry relevant signal information, and therefore, they represent a critical part to analyze. In this paper, we study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004